Прохорова Наталья Григорьевна: другие произведения.

Б. О кольцах Евклида, Эйлер

Сервер "Заграница": [Регистрация] [Найти] [Рейтинги] [Обсуждения] [Новинки] [Помощь]
  • Оставить комментарий
  • © Copyright Прохорова Наталья Григорьевна (miss.prohorova2009@yandex.ru)
  • Обновлено: 14/03/2017. 16k. Статистика.
  • Статья:
  • Скачать FB2
  •  Ваша оценка:

      
      Б. О КОЛЬЦАХ ЕВКЛИДА, ФОРМУЛА ЭЙЛЕРА-ФЕРМА, правила расчёта массивов Евклида
      
      Как видим, расчёт колец не так прост, этот расчёт относится к высшей алгебре. НОД является разным, от минимального до максимального и наоборот. Для соединения же лет и катренов, я взяла линейное представление НОД с домножением на число. Эти простые примеры объясняют ситуации, что встретится при переборе, главное, не выходить за рамки формул.
      I.Хочется добавить конкретнее о массивах Евклида. Здесь надо использовать некоторые более сложные понятия абстрактной алгебры и теории идеалов. Общая алгебра удобна тем, что позволяет рассматривать отношения между функциями (между формулами), например, сложение, вычитание, деление, умножение, в том числе и между идеалами.
      Здесь я хотела разграничить понятие колец и полей.
      Правила для колец, общее:
      1) Кольца являются одновременно и кольцом, и полем, так как сохраняется целостность кольца и имеются делители нуля. Если делителей нуля нет - это кольцо.
      a=bq, qЄR, a≠0 Vb=0 или a=0 Vb≠0, a×b=0 - такая функция имеет делитель нуля, но всё равно является кольцом.
      Если же кольцо не имеет делителя нуля, то оно называется целостным, является полем, aVb=0.
      
      Если в кольце a≠0Vb≠0, но a×b=0, то есть делитель нуля есть.
      Поле имеет делитель нуля каким бы он ни был.?????
      Обычно целостное кольцо называет Евклидовым.
      Кольцо факториально, если а=р1×р2×р3
      
      2) Это, если смотреть на цифры. Если же рассматривать с точки зрения модульной математики, то есть случаи, когда кольцо полем не является.
      Кольцо классов вычетов Zm является полем, только когда |m| - простое число.
      
      В нашем случае в коде Ностра мы имеем дело с полем чисел, так как делителей нуля нет, даже если кольцо a=bq или a=bq+r, но НОД не равен 0, это абелевы группы относительно сложения и умножения. Должен сохраняться гомоморфизм колец относительно сложения и умножения.
      3) Идеалы кольца, область b×q: n и nZ. Простое строение кольца с НОД.
      
      4) Есть 2 способа расчёта алгоритма: по модульной математике и через формулы Эйлера и Ферма, можно вместе.
      
      Удобство расчёта есть ещё и то, что цифры все можно выразить в двоичном коде через 1 и 0, соответственно и организовать перебор по этим преобразованным цифрам.
      
      
      II.Распределение целых чисел в коде по годам.
      
      Что же мы будем подставлять в массивы. Приходится повторять, так как файлы разрозненные. Во-первых, массив задан на числах завещания, нужно выбрать множества на сумму 288, 300, 353 или 1001, сами цифры тоже меняются за счёт прибавки вставок, полученных из календаря Ностра. Эти числа прибавляют b или делитель, он же mod. Биноминальные коэффициенты меняют r, при этом надо подобрать нужную тройку Пифагора, кроме того, отсчёт коэффициентов может идти от начала, а может от конца, то есть от убывающей степени 2. Годы и даты считаются отдельной формулой. Вот и все, дальше дело техники. Следует помнить, что модульная математики строится вся на равенствах, примеры расчёта я приведу ниже. Возможны варианты расчёта, например, r может менять остатки только в датах, а не остатки при расчёте по годам, всё это требует простейшего согласования с формулами. Также вариант, r может меняться в остатках по датам сразу за счёт подстановки чисел Гораполлона, но это на мой взгляд не очень удобно, так как вторая половина чисел Гораполлона ведь отходит в массиву ряда идентификации или к шифру. Как видим, вставки не только неотъемлемая часть 'вечного' календаря, но и без них не получить правильный перебор всех наших массивом по годам. Также следует учитывать, что даты и годы могут быть не отдельным расчётом, а эквивалентными друг другу и решаться исходя из этого факта, то есть общих делителей [(a+b),(a-b)], НОД (b,r1)≡НОД (r1,r2), но мне это представляется несколько сложным, ведь Ностр не знал модульной математики. Ниже я покажу, как комбинаторика связана с формулой Эйлера.
      
      
      III. Коротко, как считать. Касается перебора и лет, и соединения шифра с годами.
      Нужны будут не только нижеприведённые формулы, но и сравнения. Сравнения бывают сами по себе и система сравнений. Система сравнений будет использоваться в соединении лет и шифра. Нужна ли она для расчёта лет≡даты, не знаю, надо подбирать расчёт. Теорию сравнений привожу, все эти формулы или почти все нам понадобятся.
      Формулы модульной математики очень занимательны и в целом понятны даже мне.
      
      СИСТЕМА ЛИНЕЙНЫХ СРАВНЕНИЙ бывает по модулю и по остаткам, принципы расчёта.
      Аа) Система сравнений по модулю имеет следующие варианты. Модули взаимно просты, например, mod(3,7), mod(22,31). В этом случае использовать нужно КТО(китайская теорема об остатках). Имеется
      б) Модули равны: mod(3,3). Тогда a1×a2≡b1×b2(modm), a1+a2≡b1+b2(modm) и т.д..
      в) Модули разные: mod(3,9). В этом случае надо искать общий НОД. В этом примере он равен 3. Число решений равно количеству множителей числа.
      Бб) Система сравнений по остаткам.
      Здесь всё также происходит, как в сравнении по модулю. Но сеть один нюанс, очень выгодный для нас, если два разных сравнения равны по остаткам, то они равны по модулю.
      a≡b(mod n) и c≡d(modm) a+c≡b+d(modm)
      
      Бб) УРАВНЕНИЕ ОДНОГО ЛИНЕЙНОГО СРАВНЕНИЯ. Системы сравнений нет. Имеет следующие варианты.
      а) a≡b(modm)+f(modm), то a≡(b+f)modm
      б) Обладают симметричностью: a≡b(modm), то b≡a(modm) .
      в) а и mod взаимно просты НОД(a,mod)=1, тогда сравнение имеет одно решение и разлагается в цепную дробь ах≡(bmodm)
      г) а равно m, остаток обнуляется
      д) a, mod имеют общий НОД(a,mod)=d, при этом b должен делиться на d, иначе сравнение неразрешимо. Число решений равно НОД классов решений. Поэтому от одного кольцо можно получить несколько чисел (катренов).
      е) ac≡bc(modm), если с взаимно просто с m, то a≡b(modm)
      ж) ac≡bc(modcm) имеют общий множитель 'с', то a≡b(modm)
      з) a≡b(modm) для а и b поступаем так, если (а-b)/modm, то а и b сравнимы по модулю.
      и) a≡b(modm), то и an≡bn(modm)
      
      IV. Формулы для расчёта:
      1) Малая теорема Ферма: aр-1≡1(mod p), при этом 'а' не делится на простое 'р', для любого а≥1
      2) если 'р' простое, то ар≡а(mod p)
      3) для сравнений n степени (a+b)p≡ap+bp(mod p) , например, (3+4)2≡9+16(mod 2)
      
      Теорема Эйлера :
      б) Вторая формула Эйлера берётся для более сложных, бОльших цифр.
      an≡am(mod p), далее an-m≡1(mod p) - для равных а=а
      
      1) aф(m)≡1(modm), а,m - любые взаимно простые числа НОД (a,m)=1, где ф(m) - функция Эйлера
      m=р1n1×р2n2 ×р3n3×...×рnxn - составное число
      ф(m)= (p1n1- р1n1-1) × ( р2n2 -р2n2-1) ×...×( рnxn -рnxn-1)
      Пример: 360=23×32×51, ф(360)=(23-22) × (32-31) × (51-50)= 4×6×4=96
      Поэтому: 4360≡496 496≡?mod300, НОД(4,300)=4 х=4х1 х1≡1×495, степень всё равно остаётся большая, поэтому, 495=?(mod300), 494=?(mod75), 75=4×18+3, 394≡?mod75, 94=75+16, 316≡?mod75, 315×3≡?mod75, 3≡0mod75 , , здесь можно и наоборот сделать, сначала сократить mod и одну 4, но можно это сделать и после, я сделала после, так как это мой личный пример, как хочу, так и решаю его. Можно прибавлять и вычитать 'а' и степень числа также, приравнивая к модулю, сравнивать степени 'p' взаимно простые с модулем.
      Уравнение имеет 4 класса сравнений, так как НОД=4.
      
      2) Может пригодиться: a/p=a(p-1)/2mod p, a/p - символ Лежандра
      Используется для уравнений второй степени, а мы имеем дело с квадратами в итоге, хотя по r идёт обнуление и возврат к началу. Именно поэтому Ностр показывает в письме Генриху 28,21 без 35.
      
      
      Отдельно идёт теорема Ламе, которая используется для 'длинного' разложения массива и определяет сложность вычислений.
       Для НОД(b,a), a>b>0, количество делений не превосходит умноженного (мЕньшей цифры) b на 5 в десятичном представлении. Например, НОД (17, a), 17 - 2 цифры имеет, число шагов не может быть больше 2×5=10.
      Уменьшить число формул, свести к одной или к каким-либо 'коэффициентам', которые назойливо втирают на сайтах, нельзя, ведь код Нострадамуса, это массивы Евклида. Кое какие полезные примеры, которые встретятся при переборе массива, я приведу ниже, надеюсь как пример они пригодятся.
      
      V. Примеры расчёта.
      Пример1. Кольцо a=bq+r, исходное кольцо 35≡3(mod4) , например, прибавка идёт по остаткам+1 и из множества 'денег' +11 к a. Тогда получается 46≡4(mod4), но в этом случае 46 не эквивалентно своей правой стороне, так как 46/4 не делится с остатком 4, 46=4х+4 4х=42, при этом получается остаток 2, а сама формула равносильна 42≡2(mod4), такое решение будет правильным.
      
      Пример 2. А что делать, если b>a, например, получилось от прибавления 'денег' к b: 10≡25(mod3) 10=3x+25 x≡-5, поэтому 10≡-5(mod3), даты будут уменьшаться, а нам такой расчёт в обратную сторону к каменному веку не нужен. Итог: цифры должны быть положительные.
      Всегда должно быть a>b при переборе или брать по модулю, вот что мы узнали из модульной математики. Поэтому берём 25≡10(mod3), ответ (25-10)/3=5.
      
      Пример 3. Цифры будут большие и считать их сложнее, поэтому для них привожу некоторые примеры.
      Вариант1: 586190mod300≡0mod300+190mod300, 586190=1953×200+190 ...
      Вариант2: 586190mod300=117238×5mod300=5mod300 ...
      Вариант3: функция Эйлера для числа 586190=2,5,11,732=2,5,11,5329
      ϕ(586190)=(2-1)(11-1)(5-1)(732-73)=40×5256=210240
      
      Вариант4: Это же число, выраженное через степени двойки: 586190=219+215+214+213+212+28+27+26+23+22+20=524288+32768+16384+8192+4096+256+128+64+8+4+1, итого 99 степеней
      Во всех случаях надо сводить к взаимно простым числам с модулем, а потом расправляться с оставшимися цифрами.
      
      VI. Здесь я обещала показать, что же общего у формул Эйлера-Ферма и комбинаторики. Может пригодиться для соединения лет с шифром, так эту 3 часть кода я не закончила.
      Например: правда, здесь 4 и 11 взаимно просты
      4х=3mod11 C114=11!/4!(11-4)!=330 x=3(-1)10 ×1/11×330=90
      
      А теперь подумайте: можно ли все 600 катренов одного лишь ключа, а цифры даны в днях, высчитать вручную, каждое колечко Евклида и не ошибиться, как это 'авторы' кода высчитали это без программы. Да, Ностр считал вручную, но он считал один вариант, а нам ещё нужно подобрать множества, на которых массивы заданы, и также биноминальные коэффициенты.
      
      Этот файл я могла бы и не делать, так как те, кто будет подставлять подготовленные цифры в формулы, и так это знают. Но это нужно мне, а также французской стороне; а также всем, кто хочет знать, как считать наших новых любимцев - массивы Евклида.
      На этом подготовительный расчёт лет и 2 шифров (см другие файлы кода) закончены. А нас заждалась уже 3 часть кода: соединение лет и шифра друг с другом через массивы Евклида ряда идентификации (ряда широт), которую я сделала лишь частично. Таким образом, осталось примерно работы на 1-2 файла. Каждый ряд Ностра имеет у меня собственное имя, чтобы их можно было различать, а не говорить им: эй, ты, иди сюда!
      
      Остаётся подставлять цифры в массивы Евклида. Биноминальные коэффициенты нужно подбирать, от начала или от конца, б.к. прибавляют остатки. Также каждый массив задан на множестве вычетов по наследникам 288,300,353,1001-1002, нужно подобрать 'своё' множество к массиву Евклида. Также a=bx+r, по годам делитель прибавляют вычеты по наследникам + вставки по календарю.
      Для дат (хроники) и для лет и дат(ключ) r прибавляют числа Гораполлона непосредственно при расчёте лет? Или после при соединении с шифром?
      Или второй вариант: a=bx+r, по годам делитель прибавляют вычеты по наследникам. Для дат (хроники) и для лет и дат(ключ) r прибавляют числа Гораполлона непосредственно при расчёте лет? Или после при соединении с шифром? Также для дат делитель меняют вставки по календарю.
      Биноминальные коэффициенты меняют безусловно годы.
      Следует помнить, что массив ключа включает в себя и годы, и даты, в то время, как массивы хроник только годы, а даты идут отдельно, поэтому перебор немного другой.
      
      
      Р.S. Наше время. Доказательство формулы xn +yn=zn оказалось длительным. В 1630 году Ферма заметил, что сумма квадратов верна лишь для цифр p=4n+1. Если множитель числа p=4n+3, то это число не имеет суммы квадратов, это общеизвестно, это касается и самого числа, например, 7, 11. Эйлер доказал теорему для n=3, для n=5 доказали немецкий математик Дирихле и фр. Лежандр, для n=7 французский математик Ламе. Позже немецкий математик Куммер 1837 г. доказал формулу для всех простых степеней меньших 100, кроме 37, 67 или 97? и 59, цифры 59(второй шифр) и 37(отполовиненное число от остатков астрономического календаря) нам хорошо знакомы в коде. Вернусь к теореме, в общем виде теорема не была доказана. В 1987 году английский физик Уайлс доказал теорему Ферма полностью как частный случай доказанной в 1988г. гипотезы Таниямы. Всё говорит нам о том, что в XVI веке имелась какая-то школа математики с передовыми идеями, и Ностр был её часть. Саму же теорему Ферма не оставляют в покое и продолжают 'доказывать', желая сократить слишком длинное доказательство до другого, более компактного. Что таит ещё в себе теорема Ферма? Совпадают ли квадратичные прибавляемые или прибавленные суммы по остаткам с характерными астрологическими аспектами? Ведь у нас по остаткам прибавляются биноминальные коэффициенты до получения x2 +y2=z и до x2 +y2=z2 , а раз есть б.к., то есть и таблица Паскаля. Ответ на вопрос, как это согласуется с астрологией, я думаю, скоро мы увидим.
      
      2 P.S. 3444,1/31=111,1 четыре кола, которые имел в виду Нострадамус, показывают, что календарь Григорианский, самый что ни на есть современный, рассчитан на 30 и 31 день.И о вставках нужно помнить и своевременно включить их в перебор алгоритма Евклида по годам, Нострадамус очень волновался об этом, поэтому показал нам жирные, огромные, дорогущие свечки в завещании (крупным планом).
      
      Литература:
      1) Виленкин Н.Я. 'Алгебра и теория чисел', М., 'Просвещение', 1984 г. .
      2) Л.Я. Куликов 'Алгебра и теория чисел', М. 'Высшая школа', 1979 г. .
      3) Н.В. Кван 'Практикум по теории чисел', Благовещенск, 2003 г. .
      4) Сайт разложения на множители он-лайн: http://ru.onlinemschool.com/math/assistance/number_theory/multiplier/
      
  • Оставить комментарий
  • © Copyright Прохорова Наталья Григорьевна (miss.prohorova2009@yandex.ru)
  • Обновлено: 14/03/2017. 16k. Статистика.
  • Статья:
  •  Ваша оценка:

    Связаться с программистом сайта
    "Заграница"
    Путевые заметки
    Это наша кнопка